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Application of the Boundary-Element Method to

Waveguide Discontinuities

MASANORI KOSHIBA, SENIOR fvfEMBER,lEEE,,AND

MICHIO SUZUKI, SENSOR MEMBER, IEEE

Abstract —A numerical method for the solution of scattering of the H-

and E-plane wavegtdde junctions is described. The approach is a combina-

tion of the boundary-element method and the analytical method. A general

computer progrsmr has been developed using the quadridic elements (bigher

order boundary elements). To show the vdldity and usefulness of this

formulation, computed results are given for a right-angle comer bend, a

T-junction, an inductive strip-planar circuit mouurted in a w~veguide, a

wavegnide-type dielectric fiiter, and au irrhomogeneous waveguide junction,

and a linear taper. Comparison of the present results with the resnfts of the

finite-elemettt method shows good aigrecment.

I. INTRODUCTION

Waveguide discontinuities play an important role in designing

microwave circuits [1], [2], and theoretical and experimental

studies of waveguide discontinuity scattering problems have oc-

cupied the attention of numerous researchers for severaf decades.

Recently, a numerical approach based ori the finite-element

method (FEM) has been developed for the analysis of planar

circuits [3], [4], and H- and ~-plane waveguide jtmctions [5]-[7].

The FEM is very useful for the arbitrarily shaped discontinuities.

However, it requires a large computer memory and long compu-
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tation time to solve the final matrix equation. More recently, the

boundary-element method (BEM) [8], [9] has been applied to the

H-plane junctions [10] -[12] and the planar circuits [13]. The

BEM is one of the’ boundary’-type methods based on the integraf

equation method which has already been successfully applied to

open-boundary planar circuits in 1972 [14] and to short-boundary

planar circuits in 1975 [15], [16]. It is therefore possible to reduce

the matrix dimension and to use computer memory more eco-

nomically compared with the ‘ domain’-type method, such as the

FEM. However, in [10], [11], [14], and [15], it is assumed that the

waveguide propagates a single mode only and the evanescent

modes are neglected. Therefore, it seems to be difficult to obtain

accurate results over a wide rmge of frequencies. Furthermore, in

[10]-[16], the constant elements [8], [9] or the linear elements [8],

[9] are used to divide the boundary of the two-dimensionaf

region, Generally, it is difficult to reduce the energy error with

these boundary elements. In [12], the linear elements are used and

the condition of power conservation is satisfied to an accuracy of

about + 4 percent. In order to obtain more accurate results, fairly

many elements are necessary, and, thus, the merits of the BEM

are lost. In the FEM analysis using the quadratic triangular

elements (higher order finite elements), on the other hand, the

energy error is less than 0.1 percent [5]–[7].

In this paper, the combined method of the BEM with the

quadratic line elements (higher order boundary elements) and the

analytical method is described for the analysis of scattering by

the H- or .&plane waveguide junctions. To show the validity and
usefulness of this formulation, computed results are given for
various H- and E-plane waveguide discontinuities. Comparison
of the results of the BEM with those of the FEM [5]=[7] shows
good agreement. In the present BEM analysis, the power condi-
tion is satisfied to an accuracy of + 10L4 to 10-3.

II. BASIC EQUATIONS

In order to minimize the detail, we consider the waveguide

junction as shown in Fig. 1, where the boundary I’, connects the

discontinuities to the rectangular waveguide i (i= 1, 2), di is the

width a, or the height b, of the waveguide i for the H- or

E-plane junction, respectively; the region fl surrounded by rl,

1’2, and the short-circuit boundary r. completely encloses the

waveguide discontinuities, and the waveguide i is assumed to be

filled with dielectric of relative permittivity c,,.

Considering the excitation by the dominant TEIO mode, we

have the following basic equation:

W#r a2+
—+—
13X2 ayz

+M#J=o (1)

Z2 = k~r (2)

k~ = W2Co~0 (3)

(

for H-plane junction
+ = :’

for E-plane junction
(4)

“?

{

cr, for H-plane junction
Zr =

c, –(~/kOa)2, for -E-plane junction

(5)

where u is the angular frequency, EZ and H, are the electric and
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wavegutde 2

Al r. , noda[ point p

d, I

10

Fig. 1, Geometry of problem
Flg 2 Two-dimensional region surrounded by boundag r.

magnetic fields, respectively, and CO and pO are the permittivity

and permeability of free space, respectively.
(=-1 g=o f=l

III. MATHEMATICAL FORMULATION Flg 3. Quadratic line element.

A. Boundary-Element Approachl

Considering the region surrounded by the bounday ~ as
Here T, {.}, and {. }T denote a transpose, a column vector, and a

shown in Fig. 2, and using the fundamental solution +* [8], [9]
row vector, respectively, and the shape function N~ is given by

and Green’s formula, from (1) we obtain the following equation Nq=A#2 i- B~~+C~ (15)

[10] -[13]:
Al =1/2, Az=l/2, Aq=–l (16a)

+,+/ +“+dr=j +’+dr (6) B1 = –1/2, B~ =1/2, B3 = O (16b)
r r

where
c1 = o, C2 = o, C3=1 (16c)

with the normalized coordinate & defined on the e th element.

+“ = ;H~2)(kr) (7) Substituting (10) and (11) into (9), we obtain
‘J

$’= ~~H~2)(kr) cos a. (8)

Here +P is the value of @at the nodal point p, $, and ** are the

outward normal derivatives of I#Jand O*, respectively, H$2J and
H/2J are the zeroth- and first-order Hankel functions of the

second kind, respectively, and a is the angle between the vector r

and the outward unit normal vector n.

Noting that the nodaf point p is placed on the boundary r

and considering the integration path r~ going around the nodal

point p as shown in Fig. 2, we obtain for (6)

:+, +f+*+dr=f@*+dr
r r

(9)

where f denotes the Cauchy’s principaf value of integration,

namely } r = lim~ ~ ~/r_ r~. Dividing the boundary r into

quadratic line elements as shown in Fig. 3, @ and r) within each

element are defined in terms of $~ and ~~ at the nodaf points q

(9= 1, 2, 3), respectively, as follows:

+={~}’{+}, (lo)

where

+={~}”{+}, (11)

{@}e=[%@2@3]T

{*}e=[*l*2$3]r

{N}= [N, N2iV,]T.

where

{h}e=[lqh,h,]r (18)

{b’}, =[&g2g31T. (19)

Here Ze extends over all different elements. When the nodal

point p does not belong to the eth element, hq and g~ are

calculated with Gaussian integration as

(20)

(21)

where L is the length of the element. When the nodal point p

belongs to the e th element, calculations of hq and g~ involve the

limitation of A ~ O. In this case, cos a = O, so that

hq=O. (22)

For the case where the nodaf point p coincides with the nodal

point q =1, 2, or 3 of the eth element in Fig. 2, g~ is given by

g,= (L/2) [A,12(2) –(2Aq– Bq){11(2) –2/(&2LZ)}

(12)
+(A, – Bq + Cq)Io(2)] (23a)

(13)

(14)
gq = (L/2) [A,~2(2) -(2 A,+ Bq){11(2)-2/(#L’)}

+(Aq + B, +cq)~o(4] (’23b)

1Since a general formulation of the BEM with hnear elements for analyzing or

two-dimensional electromagnetic fields is given in [11], only the outline of the

BEM with quadratic elements wdl be described here, g,= L[Aq~2(l) + c,~o(l)] (23c)
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respectively. Here 10, II, and 1~ are calculated as follows:

(24a)

(24b)

(24c)

In the matrix notation, (17) is rewritten as follows [8]-[13]:

[H]{+ }=[G]{+}. (25)

From (25), the following equation is obtained for the waveguide

junction in Fig. 1:

[1

{+}0

[[H]o [H], [H121 {+},

{+}2

[1

{+}0

= [[do [d [G121 {+}1 (W

{+}2

where the subscripts O, 1, and 2 denote the quantities correspond-

ing to the boundaries r., 1’1, and 172in Fig. 1, respectively.

B. Analytical Approach

Assuming that the dominant TEIO mode of unit amplitude is

incident from the waveguide j (j =1, 2) in Fig. 1, @ on r,

(i= 1, 2) maybe expressed analytically as

+(x(’)‘o Y(’))=w,t*(Y(’))

“+(x”)=o Y(’)) dd” (27)

where

~., (Y(’) )”=~sinm~Y(l)/a, j m=l,2,3, . . . (28)

B,., = {kit,, -( mr/a, )’, m=l,2,3, . . . (29)

for the H-plane junction

~n, (.Y(’)) =Ji7Fcosnmy(’)/bz, n = 0,1,2,...

(30)

B,.,=/kj~ri-(m/a) ’-(nn/b,)2, rz=o, 1,2, . . .

(31)

(Jn = (1, n=()

2, n#O
(32)

for the E-plane junction, and 8,J is the Kronecker 8.

Using (10) and (11), (27) can be discretized as follows:

{+}, =~1, {f}, +[~lt{+}t (33)

where

{f}, =’2{fl}, (34)

[zl, =- Z(l/jF,m){~m}lZ Jfm(YJ1))

.{;(XW =(), ~$))};y;z). (35)

Here the components of the { ~~ }i vector are the values of

t., (Y(’) ) at the nod~ points on I’, and Z; extends over the
elements related to 17i.

C. Combination of Boundary-Element and A naIytical Relations

Using (33), fro]

equation:

[H]. [H]l

(26) we obtain the following final matrix

H]2 -[G], -[G], -[G]2

----- —----—-- .. -—.- _____——————----- .
[0] [1] [0] [0]

[0] [0] [1] [0]

-[z], [0]

[0]

{@}o-
{’4}1
{+}2

{+}0

.

-[Z]*

{0)

{0}

{0}

{0}
_—____

81j {f }j

8*J { f }J

(36)

where [1] is a unit matrjx, [0] is a null matrix, and {O} is a null

vector. In (36), { $ }0 = {O} and { ~ }0 = {O} should be considered

for the H- and E-plane Junctions, respectively,

The values of ~ at nodal points on ~, namely {~},, we

computed from (36), and then +(x(i) = O, y(’)) on r, can be

calculated from (10), The solutions on ~, allow the determination

of the scattering parameters S,, of the TEIO mode as follows:

j (‘Io Jz) = o,y(i))~l(y(z)) dy(’~,

o
i#j. (38)

In (38), for the H-Plane junction, both i?,, and 2rJ should be

replaced by 1.
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Power transmission coeffment of right-angle corner bend.
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—
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Fig 5. Element divmon for right-angle corner bend

IV. COMPUTED RESULTS

In this section, we present the computed results for various H-

and E-plane waveguide discontinuities. Convergence of the solu-

tion is checked by increasing m in (35) and the number of the

elements. Although the convergence is obtained by usin’g the first

three or four evanescent higher modes, in this analysis, the first

six evanescent higher modes are used in (35). The results of the

BEM agree well with those of the FEM [5]–[7] and agree well

1.C

.—

m=

0.5

0

:: FEM

— BEM

port 3 port 2

a

\-l-
PO:t 1

i
1.5 20

kOa IK

(a)

I
10 -

.—

m-—

0.5 -

o–
10

:: FEM

— BEM

03a

‘OPpJR 2
:0

Yl--
p 0:1 1

ZI

c

s 32

s 22

s,,

1

1.5
kOali

(b)

10
smusoldal wedge

port 3..

05 -

s 11

0

o~
10 15 20

kOal~

(c)

Fig. 6. Power reflection and transmission coefficients of T-junction

with the other theoretical results [15]–[20] and the experimental

results [18], [19], [21]. For the H-plane waveguide discontinuities,

the experimental results [18], [19] and the results of the integral

equation method [15], [16], the normal-mode method [17]–[19],

and the moment method [20] are not shown in this paper (these

results are cited in [5] and [6]).
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Fig. 7. Element division for T-junction
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0
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2.0
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Fig. 8. Power transmkon coefficient of inductive strip-planar circuit

mounted in a waveguide.

A. H-Plane Junction

Fig. 4 shows the power transmission coefficient (lS~l[2) of a

right-angle corner bend. Fig. 5(a) and (b) shows the element

divisions forthe type aandthe type bin Fig. 4,respectively.

The present approach can be applied easily tothe analysis of

multi-port junctions. Fig. 6 shows the power reflection coeffi-

cients (\ Sll 12 and ISzz12) and the power transmission coefficients

(1S2112 and IS32I* ) of a T-junction. Fig. 7(a) and (b) shows the

element divisions for the T-junction in Fig. 6(a) and the T-junc-

tion with wedge in Fig. 6(b), respectively. From Fig. 6(a)–(c), it is

20 -

10 -

n 1
“1o 15- 2.0

kOa It

Fig. 10. Power transmission coefficient of waveguide-type dielectric filter.

found that over a wide range of frequencies, the reflection at port

1 is reduced with a linear wedge (Fig. 6(b)) and that this reflec-

tion at port 1 may be further reduced with a sinusoidal wedge

(Fig. 6(c)).

Fig. 8 shows the power transmission coefficient of an inductive

strip-planar circuit mounted in a waveguide. Fig. 9 shows the

element division for this circuit. In this case, the boundary

condition @= O should be considered on strip conductors.

The present approach can also be applied to the analysis of

multi-media problems. A procedure of programming for handling

multi-media problems is given in [11]. Fig. 10 shows the power

transmission coefficient of a waveguide-type dielectric filter. Fig.

11 shows the element division for this filter. In this case, the

boundary conditions @a, = @dielectricand ~ai, = – ~d~clectm should
be considered on the interface between air and dielectric.

The present approach is applicable to the frequency range in

which waveguide propagates multi-modes. Fig. 12(a) and (b)

shows the magnitudes of reflection and transmission coefficients

of an inhomogeneous waveguide junction, respectively. Fig. 13

shows the element division for this junction. For both reflection

and transmission coefficients, the results of the BEM agree well

with those of the FEM [6]. The results of the moment method

[20] for the transmission coefficient are different from those of
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Fig. 11. Element dwision for wavegrride-type dielectric filter.
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I .FEM

— BEM
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cla =2/7

(a)

o

(b)

Fig. 12, Magnitudes of reflection and transrmsslon coefficients of mhomoge-

neous waveguide junction

the BEM and the FEM. In the moment method, the transmission

coefficients of the higher order modes are not zero at the cutoff

values of c,.

Table I shows the number of the nodal points used in the BEM

and FEM analyses of H-plane junctions. Here, in both BEM and

FEM analyses, the symmetry of a circuit to reduce the dimen-

sions of the matrices is not used. The accuracies of the present

bound~-element calculations are almost identical to those of

the earlier finite-element calculations [5], [6], and yet the BEM

Fig 13. Element division for irrhomogeneous waveguide junction.

TABLE I

NUMBER OF NODAL POINTS USED IN THE BEM AND FEM

;
m
>

1

1

1

1

Fig. 14

ANALYSES

H-plane junction

Fig.4 (type a)

Fig.4 (type b)

Fig.6 (a)

Fig.6 (b)

Fig.8

Fig.10

Fig.12

BEM

62

76

84

96

102

120

79

FEM

299

377

385

399

609

379

589

0 Experiment, Matsumaru
● FEM

— BEM

s81:e129-0
l---- c---

,,~,,

f =3.96 GHz

8
0

.

50 100 150 200
c( mm)

VSWR characteristics of linear E-plane taper.

allows the matrix dimension to be reduced by a factor of about 7

to 3.

B. E-Plane Junction

A comparison of the results obtained applying the BEM to the

linear E-plane tapers of various lengths with the experimental

results [21] and the results of the FEM [7] is given in Fig. 14 and

very good agreement is obtained.

V. CONCLUSION

A method of analysis, based on the boundary-element ap-

proach and the analytical approach, was developed for the solu-

tion of the H- and E-plane junctions. The validity of the method
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was confirmed by comparing numencaf results for various H-

and E-plane waveguide discontinuities with the results of the

finite-element method.

This approach can be applied easily to the planar circuits [3],

[4], [13]. The problem of how to deaf with waveguide junctions

with lossy media or anisotropic media hereafter still remains.
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A Frequency-Dependent Coupled-Mode Analysis of

Multiconductor Microstrip Lhw with Application to

VLSI Interconnection Problems

EVERETT G. FARR, CHI H. CHAN,

AND RAJ MI’J”TRA, FELLOW, IEEE

A/retract —The spectraf Galerkirr procedure is used to calculate the

dispersion properties of multiple conductor microstrip lines. The resulting

propagation constants are then used in a coupled-mode tkeory which

demonstrates a frequency-dependent coupling of current in a five-condnc-

tor system. These results should he useful in the strsdy of crosstalk between

parallel microstrip lines used in VLSI interconnections.

I. INTRODUCTION

Recent advances in microelectronic packaging have generated

certain difficulties associated with interconnections between VLSI

logic devices. These interconnections are usually made with mi-

crostrip transmission lines, compactly etched on printed circuit

boards. The performance of VLSI chips may be limited by the

crosstalk between multiple parallel microstrip lines either within

or between chips. Therefore, it is important to fully analyze

multiple microstrip lines in order to determine the performance

of the overall system. These crosstalk problems become more

serious as switching speeds and packing densities are increased.

Coupled microstnp lines have been analyzed with several dif-

ferent methods in the past fifteen years [1]-[4]. More recently,

multiconductor transmission lines have received some attention

[5]-[9]. These analyses, however, are all based on a quasi-static

approximation which is valid only for digital devices with switch-

ing speeds in the order of one nanosecond. When the rise-time of

the switching pulse is reduced to tens of picosecond, a full-wave

analysis of multiconductor microstrip transmission lines becomes

necessary.

The configuration under study is shown in Fig, 1. It is com-

posed of five microstnp lines, each of the same width and strip

separation. The object of this paper is to demonstrate, using a

frequency-dependent analysis, the mechanism whereby current

that is excited on one line is transferred to other lines. Although

the VLSI interconnection problem is not addressed here directly,

the technique presented herein could be employed for that pur-

pose.

11. CALCULATION OF MODES

In order to analyze the crosstalk and propagation delay of the

multiconductor transmission lines, the propagation constant for

each of the propagating modes is needed. This may be calculated

either with a quasi-static model, or with a frequency-dependent

model. In this paper, the frequency dependent model will be

used, with the quasi-static model being used for comparison at

lower frequencies.
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