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Application of the Boundary-Element Method to
Waveguide Discontinuities

MASANORI KOSHIBA, SENIOR MEMBER, IEEE, AND
MICHIO SUZUKI, SENTIOR MEMBER, IEEE

Abstract — A numerical method for the solution of scattering of the H-
and E-plane waveguide junctions is described. The approach is a combina-
tion of the boundary-element method and the analytical method. A general
computer program has been developed using the quadratic elements (higher
order boundary elements). To show the validity and usefulness of this
formulation, computed results are given for a right-angle corner bend, a
T-junction, an inductive strip-planar circuit mounted in a wiveguide, a
waveguide-type dielectric filter, and an inhomogeneous waveguide junction,
and a linear taper. Comparison of the present results with the results of the
finite-element method shows good agreement.

1. INTRODUCTION

Waveguide discontinuities play an important role in designing
microwave circuits [1], [2], and theoretical and experimental
studies of waveguide discontinuity scattering problems have oc-
cupied the attention of numerous researchers for several decades.
Recently, a numerical approach based on the finite-element
method (FEM) has been developed for the analysis of planar
circuits [3], [4], and H- and E-plane waveguide junctions [5]-[7].
The FEM is very useful for the arbitrarily shaped discontinuities.
However, it requires a large computer memory and long compu-
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tation time to solve the final matrix equation. More recently, the
boundary-element method (BEM) [8], [9] has been applied to the
H-plane junctions [10]-[12] and the planar circuits [13]. The
BEM is one of the ‘boundary’-type methods based on the integral
equation method which has already been successfully applied to
open-boundary planar circuits in 1972 [14] and to short-boundary
planar circuits in 1975 [15], [16}. It is therefore possible to reduce
the matrix dimension and to use computer memory more eco-
nomically compared with the ‘domain’-type method, such as the
FEM. However, in [10], [11], [14], and [15], it is assumed that the
waveguide propagates a single mode only and the evanescent
modes are neglected. Therefore, it seems to be difficult to obtain
accurate results over a wide range of frequencies. Furthermore, in
[10]-[16], the constant elements [8], [9] or the linear elements [8],
{9] are used to divide the boundary of the two-dimensional
region. Generally, it is difficult to reduce the energy error with
these boundary elements. In [12], the linear elements are used and
the condition of power conservation is satisfied to an accuracy of
about -+4 percent. In order to obtain more accurate results, fairly
many elements are necessary, and, thus, the merits of the BEM
are lost. In the FEM analysis using the quadratic triangular
elements (higher order finite elements), on the other hand, the
energy error is less than 0.1 percent [5]-{7].

In this paper, the combined method of the BEM with the
quadratic line elements (higher order boundary elements) and the
analytical method is described for the analysis of scattering by
the H- or E-plane waveguide junctions, To show the validity and
usefulness of this formulation, computed results are given for
various H- and E-plane waveguide discontinuities. Comparison
of the results of the BEM with those of the FEM [5]-[7] shows
good agreement. In the present BEM analysis, the power condi-
tion is satisfied to an accuracy of +10™% to 1077,

II. Basic EQUATIONS

In order to minimize the detail, we consider the waveguide
junction as shown in Fig. 1, where the boundary T, connects the
discontinuities to the rectangular waveguide i (i =1, 2), d, is the
width a, or the height b, of the waveguide i for the H- or
E-plane junction, respectively; the region € surrounded by I,
I, and the short-circuit boundary T}, completely encloses the
waveguide discontinuities, and the waveguide i is assumed to be
filled with dielectric of relative permittivity e,,.

Considering the excitation by the dominant TE,, mode, we
have the following basic equation:

P I .

—+——=+k%=0 1

i T TR (1)
k2 =k, 2
kg = wleopg (3)

for H-plane junction
for E-plane junction

(4)

for H-plane junction

— EZ’
b=\ g

<,
o { €, _(”/koa)29

for E-plane junction

(%)

where o is the angular frequency, E, and H, are the electric and

(018-9480,/86,/0200-0301$01.00 ©1986 IEEE



302 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. MTT-34, NO. 2, FEBRUARY 1986

wavequide 2 )

Fig. 1. Geometry of problem

magnetic fields, respectively, and ¢, and p, are the permittivity
and permeability of free space, respectively.

III. MATHEMATICAL FORMULATION

A. Boundary-Element Approach’

Considering the region surrounded by the boundary I' as
shown in Fig. 2, and using the fundamental solution ¢* [8], [9]
and Green’s formula, from (1) we obtain the following equation
[10]-[13]:

*¢dT' = [ ¢*ydT
4+ [ Wodl=[ o7y (6)
where
1 ”
¢* = Iy HE (kr) (7N
yr= i?cHl(z)(icr) cos a. (8)

Here ¢, is the value of ¢ at the nodal point p, ¢, and * are the
outward normal derivatives of ¢ and ¢*, respectively, H{? and
H® are the zeroth- and first-order Hankel functions of the
second kind, respectively, and a is the angle between the vector
and the outward unit normal vector n.

Noting that the nodal point p is placed on the boundary T’
and considering the integration path I, going around the nodal
point p as shown in Fig. 2, we obtain for (6)

0
ot fyredr=forpar )

where f denotes the Cauchy’s principal value of integration,
namely fp=1Ilim,_,,/r_r,. Dividing the boundary T into
quadratic line elements as shown in Fig. 3, ¢ and ¢ within each
element are defined in terms of ¢, and ¢ 4 at the nodal points ¢
(g =1, 2, 3), respectively, as follows:

$={N}"{¢}. (10)
v={N}"{¥y}. (11)
where
{¢}.=[010:05]" (12)
(¢}, =[¥1v293]" (13)
(N} =[MNN]". (14)

!Since a general formulation of the BEM with linear elements for analyzing
two-dimensional electromagnetic fields is given in [11], only the outline of the
BEM with quadratic elements will be described here.

r, nodal point p

:"

A

n

Fig 2. Two-dimensional region surrounded by boundary T.

1 3 2
[ —o- * —»¢

¢=-1 ¢£=0 ¢=1

Fig 3. Quadratic line element.

Here T, {-}, and {- T denote a transpose, a column vector, and a
row vector, respectively, and the shape function N, is given by

N,=A,8*+Bi+C, (15)
A =172,  A,=172, A;=-1 (16a)
B,=-1/2, B,=1/2, B,=0 (16b)
C, =0, G=0, C=1 (16¢)

with the normalized coordinate ¢ defined on the eth element.
Substituting (10) and (11) into (9), we obtain

%¢p+2{h}:{¢}e=2{g}3{\l/}e (17)

where
{h}e=[h1h2h3]T (18)
{g}.=[agsa] (19)

Here 3, extends over all different elements. When the nodal
point p does not belong to the eth element, h, and g, are
calculated with Gaussian integration as

L, A
hq=5/_1NqZkH1(2)(kr) cosadé (20)

(21)

where L is the length of the element. When the nodal point p
belongs to the eth element, calculations of 4, and g, involve the
limitation of A — 0. In this case, cos a =0, so that

h,=0.

L 1 .
g,= ELNM—J,H@ '(kr) at

(22)

For the case where the nodal point p coincides with the nodal
point ¢ =1, 2, or 3 of the eth element in Fig. 2, 8, is given by

2= (L/D[4,L,()~ (24, - B){ 1,(2) ~2/(7k>L?))
+(4,-B,+C)1,(2)] (23a)
8,=(L/D)[4,5,(2)—(24,+ B,){ 1,(2) ~2/(»k*L?))

+(4,+B,+C,),(2)] (23b)

g, =L[A4,5,(1)+ C, I ()] (23¢)
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respectively. Here I, I}, and I, are calculated as follows:
1 kL
= — g ——
Io(n) = [ -4 ( 5 n) dn
__1)”
o (2v+ 1)(v’)
kL )

-

]

-hl:i

<ia

(242)
7 kL
Ii(n) =f4—jH52)(711) dy

= 1 an(Z)(En)

= 24
4 kLt \ 2 (24b)

L(n) = f H‘z)(En) dn

kL o kL
H(2)
(kL) [ 2 4; ( 2 ")

M kL
+—HP| —n| -1,
4 U n o(m)
where vy is the Euler’s number.
In the matrix notation, (17) is rewritten as follows [8]-[13]:

[H]{¢} =[GCl{¥}. (25)

From (25), the following equation is obtained for the waveguide
Junction in Fig. 1:

(24¢)

{¢}o
[[H#])y [H] [HL]| {¢h
{¢}
{#}o
=[[6lo [GLy [GLI| {¥}| (26)
{v}

where the subscripts 0, 1, and 2 denote the quantities correspond-
ing to the boundaries I}, I}, and T, in Fig. 1, respectively.

B. Analytical Approach

Assuming that the dominant TE;;, mode of unit amplitude is
incident from the waveguide j (=1, 2) in Fig. 1, ¢ on T
(i =1, 2) may be expressed analytically as

!

¢(x<r) =0, y(n) =23z,];1()’(’))
B.mf o (38”) fim (56°)
Y(x=0, y®) dyf” (27)
where
f(¥0) =\2/a, smmay©/a,,  m=1,2,3,--- (28)
B.., =\ki, —(mn/a,)’, m=1,2,3,--+ (29

303
for the H-plane junction
ﬁ"l(y(’))=v6n/bl COSnﬂy(l)/bl, n=0’ 1,2,"'
(30)
Im \/kofn w/a) (n'”/b) n=0a17 29"'
(31)
_J1, n=10
n = { 2, n#0 (32)
for the E-plane junction, and §, , is the Kronecker 8.
Using (10) and (11), (27) can be discretized as follows:
{o},=8,{/},+[2].{¥}, (33)
where
{f}j=2{f1}j (34)
[z],- Z(l/Jﬂ,m){fm}fo,m i)
{N( x =0, y(’))} P, (35)

Here the components of the {f, };, vector are the values of
fim(¥) at the nodal points on T, and ¥, extends over the
elements related to T;.

C. Combination of Boundary-Element and Analytical Relations

Using (33), from (26) we obtain the following final matrix
equation:

[#], [H], [H], -[G6ly -[Gly -[Gl

o [ {0 [ —[zl, [0

_[0] [0] [1] [0] (o] ~[Z]2_
(o] [ (0} ]
{oh {0}
{¢) {0}
(W) |=|_{03 | (9
{‘P}l 81j{f}j
(¢}, 8,{f),

where [1] is a unit matrix, [0] is a null matrix, and {0} is a null
vector. In (36), {¢}, = {0} and {y }, = {0} should be considered
for the H- and E-plane junctions, respectively.

The values of ¢ at nodal points on T, namely {¢},, are
computed from (36), and then ¢(x” =0, ) on T, can be
calculated from (10). The solutions on T, allow the determmatlon
of the scattering parameters S, of the TEIO mode as follows:

d
=j(; ‘(x1) =0, y(n)fﬂ(y(/)) P =1 (37)
St/ =V Bller//ﬁjlen
-fd'qb(x") =0y fu(yO) ™, i#j. (38)
0 ,

In (38), for the H-Plane junction, both &,,
replaced by 1.

and €, should be
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&
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1.0 1.6 2.0
koa /T

Fig. 4. Power transmssion coefficient of right-angle corner bend.

«— nodal pont

1

Fig 5.

®)

Element division for right-angle corner bend

IV. CoMPUTED RESULTS

In this section, we present the computed results for various H-
and E-plane waveguide discontinuities. Convergence of the solu-
tion is checked by increasing m in (35) and the number of the
elements. Although the convergence is obtained by using the first
three or four evanescent higher modes, in this analysis, the first
six evanescent higher modes are used in (35). The results of the
BEM agree well with those of the FEM [5]-[7] and agree well

o2 FEM
10+ — BEM
port 3 port 2
U):
05|
10
—
22 FEM
1ok — BEM
03a
port 3 ‘ port 2
= a 1 a
‘LT . v
La«'
port 1
0S5 Sa
532
L S22
i Sy,
o " Il
10 1.5 2.0
koa /Y
®
10

sinusoidal wedge

IS,

koa /N

©

Fig. 6. Power reflection and transmission coefficients of T-junction.

with the other theoretical results [15]-[20] and the experimental
results [18], [19], [21]. For the H-plane waveguide discontinuities,
the experimental results [18], [19] and the results of the integral
equation method [15], [16], the normal-mode method [17]-[19],
and the moment method [20] are not shown in this paper (these
results are cited in [5] and [6]).
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(@

1 I

Fig. 7. Element division for T-junction
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0 — R
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Power transmission coefficient of inductive strip-planar circuit
mounted in a waveguide.

Fig. 8.

A. H-Plane Junction

Fig. 4 shows the power transmission coefficient (|Sy|*) of a
right-angle corner bend. Fig. 5(a) and (b) shows the element
divisions for the type @ and the type b in Fig. 4, respectively.

The present approach can be applied easily to the analysis of
multi-port junctions. Fig. 6 shows the power reflection coeffi-
cients (|S};|* and |S,,]?) and the power transmission coefficients
(18,1]* and |S5,|?) of a T-junction. Fig. 7(a) and (b) shows the
element divisions for the T-junction in Fig. 6(a) and the T-junc-
tion with wedge in Fig. 6(b), respectively. From Fig. 6(a)—(c), it is
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ek

Fig. 9. Element division for inductive strip-planar circuit mounted in a wave-
guide.
s FEM
— BEM
sol port 1 port 2
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Fig. 10. Power transmission coefficient of waveguide-type dielectric filter.

found that over a wide range of frequencies, the reflection at port
1 is reduced with a linear wedge (Fig. 6(b)) and that this reflec-
tion at port 1 may be further reduced with a sinusoidal wedge
(Fig. 6(c)).

Fig. 8 shows the power transmission coefficient of an inductive
strip-planar circuit mounted in a waveguide. Fig. 9 shows the
element division for this circuit. In this case, the boundary
condition ¢ = 0 should be considered on strip conductors.

The present approach can also be applied to the analysis of
multi-media problems. A procedure of programming for handling
multi-media problems is given in [11]. Fig. 10 shows the power
transmission coefficient of a waveguide-type dielectric filter. Fig.
11 shows the element division for this filter. In this case, the
boundary conditions Dasr = Pdiclectric and II’air =- ‘l’dle]ectno should
be considered on the interface between air and dielectric.

The present approach is applicable to the frequency range in
which waveguide propagates multi-modes. Fig. 12(a) and (b)
shows the magnitudes of reflection and transmission coefficients
of an inhomogeneous waveguide junction, respectively. Fig. 13
shows the element division for this junction. For both reflection
and transmission coefficients, the results of the BEM agree well
with those of the FEM [6]. The results of the moment method
[20] for the transmission coefficient are different from those of
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Fig. 11. Element division for waveguide-type dielectric filter.
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Fig. 12. Magnitudes of reflection and transmussion coefficients of inhomoge-
neous waveguide junction

the BEM and the FEM. In the moment method, the transmission
coefficients of the higher order modes are not zero at the cutoff
values of ¢, .

Table I shows the number of the nodal points used in the BEM
and FEM analyses of H-plane junctions. Here, in both BEM and
FEM analyses, the symmetry of a circuit to reduce the dimen-
sions of the matrices is not used. The accuracies of the present
boundary-element calculations are almost identical to those of
the earlier finite-element calculations [5], [6], and yet the BEM
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Fig 13. Element division for inhomogeneous waveguide junction.
TABLEI
NuMBER of NoDAL PoINTS UseD IN THE BEM axp FEM

ANALYSES

H-plane junction BEM FEM

Fig.4 (type a) 62 299

Fig.4 (type b) 76 377

Fig.6 (a) 84 385

Fig.6 (b) 96 399

Fig.8 102 609

Fig.10 120 379

Fig.12 79 | 589

]
o Experiment, Matsumaru

S o

~ VSWR
E
.
L

f =3.96 GHz
12+
11 s

[+]
L]
10 i 1 I 1 PR SN T a—
[¢] 50 100 150 200
¢ (mm)

Fig. 14 VSWR characteristics of linear E-plane taper.

allows the matrix dimension to be reduced by a factor of about 7
to 3.

B. E-Plane Junction

A comparison of the results obtained applying the BEM to the
linear E-plane tapers of various lengths with the experimental
results [21] and the results of the FEM [7] is given in Fig. 14 and
very good agreement is obtained.

V. CONCLUSION

A method of analysis, based on the boundary-element ap-
proach and the analytical approach, was developed for the solu-
tion of the H- and E-plane junctions. The validity of the method
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was confirmed by comparing numerical results for various H-
and E-plane waveguide discontinuities with the results of the
finite-element method.

This approach can be applied easily to the planar circuits [3],
[4], [13]. The problem of how to deal with waveguide junctions
with lossy media or anisotropic media hereafter still remains.
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A Frequency-Dependent Coupled-Mode Analysis of
Multiconductor Microstrip Lines with Application to
VLSI Interconnection Problems

EVERETT G. FARR, CHI H. CHAN,
AND RAJ MITTRA, FELLOW, IEEE

Abstract —The spectral Galerkin procedure is used to calculate the
dispersion properties of multiple conductor microstrip lines. The resulting
propagation constants are then used in a coupled-mode theory which
demonstrates a frequency-dependent coupling of current in a five-conduec-
tor system. These results should be useful in the study of crosstalk between
parallel microstrip lines used in VLSI interconnections.

I. INTRODUCTION

Recent advances in microelectronic packaging have generated
certain difficulties associated with interconnections between VLSI
logic devices. These interconnections are usually made with mi-
crostrip transmission lines, compactly etched on printed circuit
boards. The performance of VLSI chips may be limited by the
crosstalk between multiple parallel microstrip lines either within
or between chips. Therefore, it is important to fully analyze
multiple microstrip lines in order to determine the performance
of the overall system. These crosstalk problems become more
serious as switching speeds and packing densities are increased.

Coupled microstrip lines have been analyzed with several dif-
ferent methods in the past fifteen years [1]-[4]. More recently,
multiconductor transmission lines have received some attention
[5]-[9]. These analyses, however, are all based on a quasi-static
approximation which is valid only for digital devices with switch-
ing speeds in the order of one nanosecond. When the rise-time of
the switching pulse is reduced to tens of picoseconds, a full-wave
analysis of multiconductor microstrip transmission lines becomes
necessary.

The configuration under study is shown in Fig, 1. It is com-
posed of five microstrip lines, each of the same width and strip
separation. The object of this paper is to demonstrate, using a
frequency-dependent analysis, the mechanism whereby current
that is excited on one line is transferred to other lines. Although
the VLSI interconnection problem is not addressed here directly,
the technique presented herein could be employed for that pur-
pose.

II. CALCULATION OF MODES

In order to analyze the crosstalk and propagation delay of the
multiconductor transmission lines, the propagation constant for
each of the propagating modes is needed. This may be calculated
either with a quasi-static model, or with a frequency-dependent
model. In this paper, the frequency-dependent model will be
used, with the quasi-static model being used for comparison at
lower frequencies.
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